フルモールド法の鋳鋼鋳物への適用事例

○加藤 雅之(花王クエーカー)、後藤 準平(JSP)、酒井 祐之(花王)、

1. 目的

フルモールド法は、木型が不要、短納期という特徴があり、 鋳鉄・アルミ分野での適用がますます広がってきている。一 方で、注湯温度がより高い鋳鋼分野においては、模型の分 解ガスによる吹き戻しや、鋳物の表面欠陥等の問題で広がっていないのが現状である.

使用される発泡模型材料としては、鋳鉄分野ではポリスチレン(PS)が広く用いられているが、ベンゼン環構造を持つため、熱分解残渣が多く、鋳物表面に残渣欠陥を生じる.これを防ぐため、模型材料をアクリル系(PMMA)とすると、残渣欠陥は生じないが、熱分解が速く急速に熱分解ガスを生じるため、鋳造時の吹き戻しが生じてしまう. 特に鋳鋼の様に鋳造温度が高い場合、熱分解がより激しく、ガス圧が増大するため吹き戻しが著しい.

そこで、鋳鋼鋳物でのフルモールド法の検討において、 これら課題を解消するため、模型としてはより熱分解性が緩 やかなアクリル系の模型材料を用い、更に塗型剤の通気性 を変えて鋳造試験を実施した結果を報告する.

2. 実験方法

長方形のテストピース模型(306×206×306 mm H)を切削加工で製造して、鋳造試験を実施した。発泡模型は、熱分解が緩やかとなるように配合を調整したアクリル系樹脂「クリアポール®ZERO」を使用した。見かけ密度は約 18 kg/m³ である。

塗型剤は、表1に示した通り、組成、通気度と塗膜強度の異なるフルモールド用塗型剤を準備して実験を行った. 塗膜強度、通気度は、(社)日本鋳造工学会関西支部発行の 塗型剤の標準試験法に準じて測定した. 塗布は、刷毛で乾燥膜厚が1~2mm になるよう2度塗りを行った. なお、本模型は、従来EPSと同様に問題なく塗布が可能であった.

表 1.供試塗型剤

公元/(1)						
塗型剤	主骨材	塗膜強度	通気度			
		[MPa]				
1	シリカ・アルミナ系、	7.0	1.9			
	黒鉛(鋳鉄用)					
2	ジルコン	8.6	1.8			
3	ムライト	9.8	2.3			
4	ムライト	8.9	5.7			

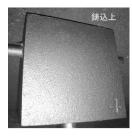
上記塗型剤を塗布・乾燥した模型を、フラン鋳型にて造型し、(株)IHI 殿で注湯温度 1570℃、材質 SCW480 にて鋳造を行った.

3. 結果•考察

発泡模型の基礎的な物性を表2に示す。

機械強度は従来のポリスチレン系等の発泡模型と同等であり、熱分解性は従来アクリル系よりも低く、燃焼時の煤はほぼ観測されなかった。

表 2. 発泡模型


	クリアポール®ZERO	従来ポリスチレン
機械強度	良好	良好
熱分解性 (従来アクリル系 との比較)	遅い	遅い
燃焼時の煤	ほぼ無し	多い

塗型剤の違いによるテストピースでの鋳造結果を下記に示す. 鋳鉄用フルモールド塗型剤1では、耐熱性が低く、焼着欠陥や鋳肌荒れが確認された.一方、塗型剤2~4においては、いずれも焼着欠陥は観察されなかった。また、骨材においては、ジルコンよりムライトの鋳肌が良好であり、通気度が高い方が、ガス欠陥も少ないことが分かった.

表 3.鋳込み評価結果

Standard All House						
塗型剤	ガス欠陥	鋳肌	焼着	鋳造時		
			欠陥	吹き戻し		
1	小	凸凹あり	あり	なし		
2	小	凸凹あり	なし	なし		
3	小	最も良好	なし	なし		
4	小(3より良)	良好	なし	なし		

図 1. 塗型4の鋳造品外観(左)と天面のガス欠陥の様子(右)

現在、本模型と塗型剤4にて、実製品でのトライを実施しており、良好な結果が得られつつある.